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Tandem mirror trapped particle instability driven by axial shear in E x B rotation

J. A. Byers
Lawrence Livermore National Laboratory, University of California,

P.O. Boz 5511, Lavermore, Ca., 94550

We obtain a complete solution for the growth rate and real frequency of electrostatic
trapped particle modes driven by the axial shear in the equilibrium E x B rotational
frequency, wg, in the eikonal limit for a simplified square well equilibrium model of a
tandem mirror. The instability takes on a flute character for some region of parameter
space, principally at low mode number and large passing fraction, with a growth rate
N2 = mz(_AwT)?, in agreement with prior calculations, but is nonflute elswhere, even
with zero curvature. The mode is more unstable for larger passing density in contrast
to the curvature driven trapped particle mode which is stable for larger passing density.
This feature makes the mode probably more dangerous for more strongly collisional
devices. In the flute regime this mode appears identical to the MHD flute version of
the shear mode. Depending on the sign of the charge of the passing species and the
sign of the change in wg, this trapped particle mode can isolate itself to the center cell
and thus avoid the stabilizing effect of strong anchor curvature and can do so without
paying the MHD penalty for bending the field lines, thus requiring large center cell
ion gyro radius for stabilization. For some typical tandem equilibria, this worst form
of the mode is not possible since the mode tends to isolate to the anchor rather than
to the center cell. In this case the shear in the rotation can also help to stabilize the

curvature—driven mode.

I. INTRODUCTION
In the MHD context(E; = 0) an instability driven by the axial variation or shear
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in the equilibrium E x B velocity was first discussed by Lee et al,’ where, in the high

Alfven velocity, V4, limit (flute limit), the growth rate takes the form N2 = mZ(AwE)Q-,
which shows the growth rate increasing linearly with the mode number, m, apparently
without limit. This paper did not treat the mode in the context of realistic tandem mirror
equilibria with strongly stabilizing curvature in the anchor region. In this case net flute
stability is presumably given by a net balance of the stable curvature flute frequency with
the unstable shear flute growth rate. There is yet no general treatment of ballooning forms
of this mode, although for a specialized model ref. 1 describes the mode as axially localized
but with large axial wavelength. For a general tandem mirror equilibrium we can expect
a localized or ballooning form of this MHD shear mode, where the mode can isolate away
from the strong curvature stable regions by paying the penalty for bending the lines of
force. This topic is being explored in detail by numerical solution of the time dependent

MHD equations by Cohen and Freis.?

In the present paper we do not examine the MHD limit(E) = 0), but instead examine
the electrostatic trapped particle limit(A; = 0). In this limit the mode was first discussed
by Berk et al, who found a flute with a growth rate identical to that of the MHD flute form
of the the mode. This latter paper also did not discuss how the mode can become nonflute.
This is a particularly crucial issue for the usual tandem mirror configuration with strong
stabilizing curvature in the anchor region. because electrostatic trapped particle modes
are able to isolate to the center cell without paying the MHD penalty of bending field
lines. The circumstances under which this can occur for the shear mode are fully discussed
for a simple model equilibrium in this paper. We shall see that the physical mechanism
for the shear mode is different in the flute and isolated limits. We will also find that the
shear mode is more unstable for larger passing density. in contrast to the curvature-driven
mode which is stabilized by larger passing density.® and so we are evidently faced with the
possibility of some form of a trapped particle mode being unstable for any magnitude of

passing density.
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In a previously published Letter* we derived the basic shear mode dispersion relation
and evaluated it for some cases. While the basic results of that Letter are correct(and will
be repeated here) the explanation was necessarily terse. This paper expands the discussion
and supplies new results, especially concerning the interaction of the shear—driven mode
with the curvature-driven mode and the effects of ion finite gyro radius (FLR). This paper
also applies the stability criteria derived herein to some simplified models of actual tandem
mirror devices. We will find for a variety of two-region tandem equilibria that the shear
mode tends to isolate to the anchor and therefore can be stable if the anchor pressure-

weighted curvature is large enough.

Using simple square well models for the equilibrium and the usual assumption of
electrostatic fields, and the high mode number or eikonal limit of local-in-r modes, we are
able to derive and numerically solve the dispersion relation for axial shear driven trapped
particle modes. Sec. II describes the equilibrium, sec. III gives a simple description of
some aspects of a guiding center drift picture, sec IV describes the solution techniques, sec.
V describes the eigenmode solutions for the pure velocity shear mode, secs. VI and VII
describe the solutions in the presence of curvature, sec. VIII adds in the effects of finite

ion gyro radius, and secs. IX and X sum up the results and draw conclusions.

II. EQUILIBRIUM MODEL

We specialize to two square well regions, modeling a center cell and anchor. We also
as the simplest subset of equilibrium models consider the total density and the magnetic
field to be constant in z, except for spikes in B at the region boundaries to model the
magnetic mirrors. We also take the potential to be constant in z—except for a possible
spike at the center cell-anchor boundary- but with a jump in the radial slope at the same
boundary, thus giving a jump in the £ x B rotation frequency, Awg. That is, our axial
equilibrium model is valid only at a single radius where the equilibrium potential has no

change in z but where its radial derivative does. We specialize to no passing ions and to
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arbitrary passing electron fraction, ny. In general we will also include curvature drifts of
the trapped ions, with different magnitudes and opposite signs in the two regions. This
perhaps extremely specialized equilibrium model is useful because it reduces the number
of parameters that must be scanned for a complete survey of the instability. For example,
with zero curvature, we need only specify the passing fraction, n,, and 8, the fractional
length of the anchor relative to the total half-length. The mode frequencies and growth
rates are then determined as a relative fraction of Awg, with the absolute value being
relatively unimportant. Fig. 1 shows the axial profiles of the various densities and the

E x B drift frequency.

The electron axial equilibrium is assumed to follow the Boltzmann law, which for our
model determines the axial variation of 8n/dr through its connection to the axial variation
or shear in 3®/3r. Collisionless concepts are otherwise assumed even though we scan the
solution up to 100% passing density-the rationale being that a collisionless solution for a
Boltzmann equilibrium distribution at 100% passing density would be the expected answer
for a strongly collisional electron species. And, in fact, our form of the passing electron
response for n, = 1. agrees with that found by Nevins® for his strongly collisional solution,
as modified for our special equilibrium. Our model will not apply for more intermediate

collisionality regimes where more subtle effects can be expected.

The validity of this model for any actual tandem is limited especially considering the
variety of possibilities when including both a final potential peak(plug) and a potential
depression(thermal barrier) at some intermediate point. and the variety of possible lengths
and densities of each region. Accurate answers for realistic tandems probably would require
at least a three region model with densities and potentials varying from region to region.
Such a model is well within the capabilities of our basic numerical solution technique—
more regions will just result in a greater number of roots. At this stage, however, it was
deemed more appropriate to stick with the simplest possible equilibriurn model in order to

exhaustively study the physics of the shear mode instability without the clutter of details
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that necessarily accompany a more exact modeling of actual tandem equilibria. We shall
see that the mode still has complex behavior, even within the limits set by this perhaps
simplest of all possible equilbrium models. Most importantly, the physics of the instability
mechanism becomes clearest in such a setting, and should aid our understanding of the
results obtained, either numerically or analytically, with more realistic equilibrium models.
Moreover, we shall be able to make some limited statements about stability of the simplest
of actual tandem configurations, those which can be characterized as dominated by two

regions, either with or without a thermal barrier.

It seems useful to display the following definitions of equilibrium quantities. For any
function F(z) we define F = (1 — §)F¢ + 6F 4, which is the bounce average value seen by
the passing electrons or equivalently, for this model, the density weighted average over the

entire length.

n, = passing density fraction (1)
8 = fractional anchor length (2)
1 — 6 = fractional center cell half length (3)

We work in the frame where the passing electrons see zero E x B drift,
Bug =05 = (L ~ 6)wc +8wa =0 (4)
(Awg)? = (1 - 8)wd + 6w} = (6 — 8°)(Awr)® ~ 6(Awg)’ (5)
The density gradient is characterized by the electron diamagnetic drift frequency,

Q.; = —m/r - (8n/0r),T./(neB) = mp?/r? (_%Z—T:> Wed (6)

where
p? = T./(miw?) (7)

Its bounce average value is given by

0y = (1. — 6)Quc + 68 4 (8)



And it can be shown that
0, = Qe +mwe =Dup + mwy (9)

where the latter equation illustrates the axial variation of the density gradient or of {2, and
how it is directly related to the axial variation of wg. As typical values we usually choose
Awg =~ (1073 — 10™?)w,,, and a similar range of values for (2. /m. Note that we are using
the convention that {1; = mw;, where ; is either ~ or 4, and where m is the azimuthal

mode number. A useful dimensionless expression appearing in the stability analysis is

D = ny(r/mp,)? (10)
And note that
DQ: = EE ("E@) Weq (11)
m n Or

III. GUIDING CENTER DRIFTS AND CHARGE SEPARATION

Both MHD and electrostatic trapped particle instabilities have simple explanations
based on charge separation caused by the effects of the guiding center drift motion. The
shear mode should be no exception. The flute limit, while appearing to be the simplest,
is actually more subtle in this regard. In the flute limit, there is no difference in the net
average ion—electron equilibrium E x B drift, or in the perturbed E x B drift. With zero
curvature and ignoring the rotation(centrifugal) driven drift, then the only guiding center
drift remaining that can produce charge separation is the polarization drift, normally
thought of as only a reactive response (inertia) of the system to ensure quasineutrality.
Here, however, part of the polarization drift, that due to V - VE, is responsible for the
instability mechanism in the flute limit. Normally, without velocity shear, this drift merely
is the necessary drift to account for the doppler shift at the constant rotation frequency.
With shear, however, there remains the differential drift between the two regions, and this
shows up in the polarization drift, which is, upon averaging over the entire length as is

appropriate for a flute mode, for a two region, constant density, equal length model,



I/Z(w - Qc)¢c + 1/2(w - QA)¢A =0

Now substitute for ¢4 in terms of ¢ using the flute relationship of constant displacement,
dc/(w—Qc) =da/(w—N4) and use Qc = mAwg/2 and Q4 = —mAwEg/2, to give

A A
(w—m%)2 + (w-l-m—%)2 =0

or

w? = —m?Awg?/4

This simple derivation requires that the mode be flute, and other considerations determine
when this is valid. In this electrostatic trapped particle model it is clearly the passing
density that links the two regions, and indeed, in the limit of zero passing density we
would have simply two independent regions with independent stable modes doppler shifted
at their respective E x B drift frequencies. Furthermore this supplies the reason that this
shear—driven flute mode is more unstable for larger passing fraction, as we shall see, in
contrast to the curvature-driven isolated mode that is more unstable for smaller passing
fraction. As another comparison, in the MHD (E| = 0) case the shear mode tends to be
flute because nonflutes tend to be stabilized by line bending, which effect is completely

absent in the electrostatic (A) = 0) case.

In the nonflute limit, when the mode becomes localized strongly to one of the two
regions, the guiding center drift explanation is actually simpler: now there is a difference
between the equilibrium E x B drifts of the passing species and its trapped counterpart of
oppositely signed charge, since the trapped species sees its local value of the drift (and can
no longer be flute averaged with the other trapped species) whereas the passing species
sees the drift averaged over the entire length. This differential equilibrium drift acts much
like a curvature-driven differential drift. We shall see that this supplies the correct answer
for the instability drive in the isolated limit. The rest of this paper gives an explanation of
Just how the mode makes the transition from flute to nearly isolated, and what stabilizes

the mode, and how this shear mode interacts with curvature and FLR.



IV. SOLUTION TECHNIQUE

The technique used in this paper is to write the equations for quasineutrality, assuming
electrostatic modes, and assuming bounce averaging of all particle species, in both regions
and to then solve the resulting coupled set of equations for the mode complex frequency
and the eigenmode relative amplitudes ¢ and ¢4 in the center cell and anchor. When
we have zero curvature this results in a cubic dispersion relation, simply because we have
only three separate resonant denominators, w — mwc for the center cell trapped species,
w — mw 4 for the anchor trapped species, and w for the passing electrons—we work in the
frame where the passing electron species sees zero E x B drift. This frame turns out to
result in the simplest form of the dispersion relation—any other frame would do as well but
at the complication of adding a doppler shift to all of the frequencies. Adding curvature
drift to the trapped ions in both center cell and anchor produces an additional two resonant
denominators thus resulting in a quintic dispersion relation. Either the cubic or quintic
is easily solved with standard root solvers. The results are presented here primarily in
the form of graphs of the growth rate and frequency versus some system parameter. It is
relatively easy to get a fairly complete map of the solution for this model equilibrium. The
parameters scanned are the mode number m and passing density n, for the pure velocity
shear mode. When adding curvature we additionally scan the curvature drift frequencies,
principally as the ratio of the curvature-driven-flute frequency relative to Awg, and a;/r,
finite ion gyro radius(FLR), principally as a ratio of the ion diamagnetic drift frequency

w.; relative to Awg.

During the development of this work, the technique of numerically solving the coupled
equations for the eigenmode frequencies was undertaken as a check on the solutions ob-
tained from a linearized bounce average simulation code which is an initial value approach
where the real frequency and growth rate of the fastest growing mode are measured from
the time dependent solution. Both techniques agree to the limits of measurement accuracy

for the simplified square well model described here. The simulation technique is expected
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to be more appropriate for nonsquare well models with continuous orbits— limited results

have been obtained but will not be discussed in this paper.

V. ELECTROSTATIC MODES IN ZERO CURVATURE LIMIT

In order to elucidate the physics of the velocity shear effect, we first specialize to
zero curvature and zero ion gyro radius(the ion inertia or polarization drift is retained).
We begin by writing the equations of quasineutrality in the high mode number m limit,
assuming local-in-r solutions, using the electrostatic limit (4, = 0), and bounce averaging
the response for all species. As discussed in the section on equilibrium we have restricted
our model] to five different species, center cell trapped ions and electrons, anchor trapped
ions and electrons, and passing electrons. Later we will allow our ion species to experience
curvature drifts, but here we will start with only the £ x B drift frequency with a jump
in its value, Awg, at the center cell- anchor boundary, with values we in the center cell
and w4 in the anchor. We write each of the charge separation terms in terms of the
perturbation potentials in the center cell and anchor, ¢c and ¢ 4. This results in two
coupled equations which must then be solved for the (complex) value of the eigenmode

frequency, w. In the center cell we have

DQucéc  DO((1.— 8)gc + 644)

~#c — (g~ pa) + 0" - (12)
and in the anchor we have
—6a— D(. — 6)(da — bc) + DQuada  DQ((1. —8)dc + 6¢4) (13)

w—04 w
The terms in Eq. (12) and Eq. (13) are respectively, the polarization drift of the trapped
ions, the Debye shielding from the passing electrons, the trapped ion minus the trapped
electron E x B drift, and the passing electron E x B drift. We have divided through by the
coefficient of the polarization term, (m?/r?)(wZ /w?%). These equations differ from the zero
shear limit only in the axial variation of wg in the different resonant denominators, and as

reflected in the axial variation of (.. Note in particular the last term in these equations,
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that for the passing electron E x B response which is seen to be proportional to the bounce
average value of (},. This result is a natural consequence of the bounce average formalism
as applied to the guiding center drift equations. In the high bounce frequency limit the
average radial drift motion is proportional to the bounce average of the wave potential, ¢.
But now, in the presence of an axial variation in wg and in (), the novel feature is that
this average radial motion encounters an equilibrium radial density gradient that is also a
function of the orbit path in z, with the result that the average charge separation, which
is distributed uniformly over the entire orbit, must be calculated using the bounce average
of the density gradient or of 2,. This result also has been independently derived, starting

from the drift kinetic equation, by R. H. Cohen.*

Eqgs. (12),(13) can be manipulated to give the following symmetric form:
¢c [ww —Qc) + Dé(w — Q) (w — Q4)] ~ ¢aDb(w - W) (w-0c)=0  (14)
b4 [wlw—04) + Db(w - ) (w - Q)] — dDb(w — ) (w—Na) =0 (15)

In this limit of zero curvature there were only three distinct resonant denominators, w, (w—
(2c), and (w—114), and the net result upon eliminating ¢c, ¢ 4 is a cubic dispersion relation

for the eigenmode frequency w, which can be put in the form
w(w = Ne)(w — Q) + D(w — Q) [6(w - Q42 + (1. - §)(w—0c)?)] =0 (16)

From this equation we can immediately see one important limit, D — oo, where the

equation reduces to the product of a single real root, w = (1., and a quadratic, with the

resulting dispersion relation,

w? = ~m?(Awg)? (17)

and from either Eq. (14) or Eq. (15) it can be seen that the eigenmode satisfies the flute

form,

pc/(w—Qc) =da/(w - Qa) (18)
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which states that the plasma displacement is constant, {c = £4. This flute limit with
growth rate 42 = mzm is identical to that obtained in the MHD flute limit by Lee
et al,! and agrees with the electrostatic trapped particle mode answer obtained by Berk et
al,3 where these latter two have been evaluated in the zero ion gyro radius limit. So we have
the first result, that the trapped particle shear mode is identical to the MHD shear mode
in the flute limit. This limit may be the least interesting, however, as we anticipate that

the trapped particle mode can more easily localize to avoid strong stabilizing regions—this

point will be examined in detail further on when we include curvature drifts.

If we substitute the flute form of the mode into Egs. (12) and (13) we get all terms
cancelling out except the first, that due to the polarization drift, which confirms our earlier

analysis.

Before proceeding to the numerical solution of the full cubic dispersion relation, let
us see if we can obtain more useful information by making certain assumptions. The most
obvious limit is to assume that the mode can completely localize to one or the other of
the two regions (even in this zero curvature limit). This assumption will later be justified
and its range of validity determined by the full numerical solution. To look in this limit
we need merely set ¢ 4 = 0 in Eq. (12). When we do this we obtain another quadratic

—w? + wmwe + NpWeWes (— T @) ~0 (19)

n dr

where we here have taken the limit D << 1, since we have already seen that the opposite
limit D >> 1 is the flute regime. This fully isolated limit, Eq. (19), predicts an instability
drive that is proportional to ny,wc and a stabilizing term wmwc, similar to the physics of a
fast drift term. The usual overshoot stabilizing term (due to the different bounce average
of the wave potential ¢ experienced by the passing electrons and the trapped ions) also
proportional to w, is ignored here since this fully isolated limit turns out to be valid only
in the high mode number regime where this term is small since it scales as 1/m. Marginal

stability is approximately given by the following relation between mode number, m, and



- 12 .

passing fraction, n,,

¢)
mzwc/4 > NpWes (- r (_n) (20)
n Jr

and we see that this limit predicts a lower bound on n, for instability, i.e., this shear mode
is more unstable for larger passing fraction, in contrast to the result for the curvature driven
trapped particle mode. Moreover, the physical mechanism for instability in this nonflute
regime can be seen to be the differential equilibrium E x B drift between the fractional
density n, of trapped ions and the passing electrons. That is, the trapped ions experience
a nonzero E x B drift whereas the passing electrons see zero drift, and we know this to be
the usual mechanism for interchange instability where in the present case the differential
E x B drift takes the place of the conventional curvature drift. In this picture stability
is dictated by the sign of the differential ion- electron drift and so we can immediately
predict that the region to which the nonflute form of the mode will tend to isolate is that

with the negative sign of wp—remember we are in the frame where the passing electrons

see zero E x B drift.

From this fully isolated approximation, Eq. (19), we can also obtain an approximate

answer for the maximum shear driven growth rate:

a
max 2 ~ npAwpd we (— :—L 5;) (21)

These features of the fully isolated approximation are in fact confirmed by the full
solution of Eq. (16)—but only when the mode is not ‘near’ the flute regime. In the flute
regime, the physical explanation is not as intuitive and it is certainly not the differential
drift, because the flute average of the differential £ x B drift is identically zero. The flute
limit, which is also identical to the flute limit in the MHD version, can only be explained
by an effect of the £ x B shear on the ion polarization drifts, or said another way on the
ion inertia. In any case the numerical solution of Eq. (16) shows a smooth transition from
the flute regime to the nonflute. Fig. 2 shows a plot of the growth rate and frequency

vs mode number, m. The growth rate is seen to equal the flute value, in agreement with
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Eq. (17), v o m, at low mode number, then to peak and finally to drop to zero at some
large m. In the low mode number regime, the real frequency is zero, also in agreement
with Eq. (17), and also in Fig. 2, a plot of the displacement ratio {c /{4 shows this ratio
to equal unity here, further substantiating the description of the mode as a flute in this
regime. Away from this low mode number, flute regime we find that the mode tends to
isolate more and more to the region with the negative wg, just as was predicted from
our fully isolated approximation. Also, the marginal stability m value is given reasonably
accurately by that approximation, Eq. (20). In particular, the scaling of the marginal n,,
with m? is clearly seen in Fig. 2. So in general we see a strong dependence of the growth
rate on the passing density, unlike the flute limit which has no dependence at all— rather,
the flute regime growth rate is independent of n,, but the region of validity of the flute

limit shrinks as the passing fraction, np, falls.

The flute result and the isolated marginal m, Eq. (20), illustrate another limit oc-
casionally used as an aid to simplifying the results in a more general analysis, the limit
where the center cell is extremely long, or the anchor extremely short, § — 0. We see that
the marginal m, and therefore also the range of m where the mode is flute, goes inversely
with 6 and that the flute growth rate is proportional to 612, So in this limit the analytic
prediction would be that the mode was always flute. We can now see that this result is a

consequence of taking the long center cell limit and not an absolute characteristic of the

mode itself.

VI. EFFECT OF CURVATURE ON THE SHEAR-DRIVEN MODE

When we add in curvature drifts for the trapped ion species, our dispersion relation
is modified from the previous cubic to a quintic, less easily approximated, but still easily
solved numerically. In broad terms, we can expect the solutions to be affected in two
distinct ways. One, the curvature drifts drive the usual trapped particle mode, as described

in ref. 3, and in the next section we discuss how velocity shear affects this mode. Two,
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curvature can be expected to modify the solutions of the shear-driven mode and this topic is
what we now develop. Net flute stability, perhaps the most obvious issue, can be expected
to be determined simply by algebraically adding the curvature flute drive(stable) to the
velocity shear flute drive(unstable). The more interesting possibility arises, however, when
the condition for net flute stability is satisfied, and where the passing fraction is much
larger than the minimum needed to stabilize the curvature driven trapped particle mode,
but where the mode can still go unstable to the velocity shear mechanism by isolating
away from the strongly stable curvature region. From our previous discussion about how
the mode likes to isolate to the region with negative wy, we anticipate that in the presence
of strongly stable curvature in the anchor, the mode can isolate to the center cell only if

this is the region with negative wg.

These concepts are generally confirmed by the numerical solution, as shown in Fig. 3.
We see that for the positive wc case, sufficiently strong anchor curvature can stabilize the
mode, but for the negative wc case, we still have a region of instability, and this mode is
localized to the center cell. It seems worthwhile to examine in detail the results shown in
Fig. 3. For the positive wc case complete stability occurs once the flute stability condition
is satisfied, i.e., when the flute curvature stability drive equals or exceeds the flute shear
instability drive. More specifically this is given by wy. -> max s, where wy, is the curvature
driven flute frequency, and where ~, is the shear driven growth rate. For the zero curvature
case we had the maximum ~, ~ 4.2Awg. And we now see that complete stability occurs
when wy, ~ 4.5Awg, which is very good agreement. Before becoming completely stabilized
this positive wc case is characterized by a mode with displacements €4 > £, although
when the curvature is relatively strong the ratio of the two displacements is of order unity,
which is sensible since we would not expect an unstable mode to localize entirely to the
anchor which has the strong stabilizing curvature, unlike the zero curvature case where

the positive we shear mode does localize to the anchor at high m.

Now compare the foregoing to the detailed mode behavior for the negative wc case.
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Here we have instability for a range of mode numbers regardless of the strength of the
anchor curvature. The unstable mode is characterized by £ > £4 and now the mode can
again isolate almost completely to the center cell, for the higher mode numbers. Indeed,
the growth curve for the higher mode numbers shows very little difference from the zero
curvature case. The ability of the mode to isolate almost completely to the center cell may
be its most worrisome feature, and the one that makes it presumably more dangerous than
the MHD version which would have to pay the line bending penalty in order to isolate

away from the anchor.

These results produce the following simple scalings for the shear mode and how it is

affected by the flute average of the curvature. Stabilization of the shear mode in its flute

or near-flute form by curvature requires w?c > mz(_AwE)z, which the numerical results
confirm to be a precise condition for low m. An approximate condition for complete

stability to flute modes can be stated as w}c > max 2, or § wiawe;

~

6 npAwEgwe;, which
gives wra 2 npAwg, where wy 4 is the mean curvature drift frequency in the anchor. We
will not attempt to evaluate this criterion for real devices, except to note that it does appear
possible for some conditions, particularly for the lower values of n,. When it is satisfied
the positive we case is completely stable against the shear mode, even for zero FLR. The
negative wc case is also stabilized in its flute form, but this still allows an unstable shear
mode isolated to the center cell at low and moderate mode number. Complete stability in

this latter case would require sufficient FLR in the center cell.

To the extent that strong anchor curvature will force the mode to completely isolate
to the center cell, we can analyze the stability condition from just our original center cell
equation (which had zero curvature), Eq. (12), by taking the limit ¢ 4 — 0. This is similar
to our previous completely isolated approximation, but now we are invoking other reasons
for the isolation and we want to examine the nature of the stability condition at low mode

number where usually D >> 1. Putting ¢4 = 0 in Eq. (12) gives
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(w? —we)(~1— D) +wD(Q ~ Qc) - (w—Qc)DA(1-86) =0 (22)

Collecting terms of like powers of w gives
w?(~1 - D6) + w [Qc(1 + Dé) — DQc + DML, | + Qe DR (1-6) =0 (23)

The expression linear in w has three distinct terms. The last is the usual overshoot term,>
the middle term is an additional overshoot term induced by the shear, which will add to
the usual overshoot term in our negative {}¢ case, and the first is a shear-induced fast drift
term, which will be opposite in sign to the overshoot terms, but smaller by a factor 6. (In
contrast, in the high m limit we have previously seen that the fast drift term dominates
over the overshoot terms). Analysis of this equation (which has zero FLR) in the large D
or low m limit indicates that instability is possible, and the results approximately agree
with those obtained from a numerical solution of the full quintic dispersion relation. Both
cases shown in Fig. 3 used the n, = 1.0 limit, where the lower mode numbers are stable,
indicating that not only is the mode flute stabilized by the curvature, but that the localized
form of the mode is also stabilized by the overshoot terms. in this low m regime. Results
for lower values of n, are similar as regards the high m regime, with the maximum unstable
mode number scaling as ,/n,, as was already seen in Fig. 2. However, the lower n, values,
say np, ~ 0.1, now generally show the region of instability extending down to the very
lowest mode numbers, m = 1,2, evidently because the overshoot stabilizing terms are less
effective at lower passing fraction. These low m unstable modes are of the most concern,
since it will be more difficult to stabilize them with FLR. A typical n, = 0.1 result is

discussed in sec. VIII.

For the positive wc case there is the possibility of increased stability over a limited
parameter range. (remember that the curvature drifts alone can drive the trapped particle
mode if the passing density is too low.) Here, for positive w¢c: where the velocity shear tends
to drive instabilty only in the anchor which is strongly stabilized by the anchor curvature,

and to add to stability in the center cell where the curvature is driving it unstable, we
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can have the range of stable passing density extended to lower values as compared to the
zero shear case. This has in fact been observed in our model and is discussed in more
detail in the next section. The point of bringing up this issue here is to contrast its effect
of the possibility of net greater stability(relative to the zero shear case) to the effect of
primary interest in this section which was the possibility of greater instability(relative to
the zero shear case) for the negative wc. The tendency for and physical explanation of
either possibility is unambiguous for the present model and should guide the interpretation

of solutions in more realistic equilibria.

VII. EFFECT OF SHEAR ON THE CURVATURE-DRIVEN MODE

There are other issues requiring explanation when we consider the simultaneous pres-
ence of both shear and curvature. Clearly, if the shear is very weak in some sense then we
should obtain nearly just the standard curvature-driven trapped particle mode as discussed
m ref. 3. And, if the curvature is very weak in some sense then we should obtain nearly
just the simple shear mode as described in sec. V. So we first need to determine what is
meant by weak and over what parameter range either of these single effect regimes could be
expected. More generally, whereas the previous section dealt with the effect of curvature
on the shear mode, this section treats the converse, the effect of shear on the curvature-
driven trapped particle mode, and attempts to determine the conditions for which both
modes are simultaneously present. Since net stability regardless of the drive is the real
issue, we need to be aware of the curvature driven mode and to see if it can be described
as a separate mode or as somehow combined with the shear mode, which itself we have
already seen to be modified by the flute average effect of the curvature. In the examples
of the previous section, we chose conditions such that the curvature mode did not appear

for the low mode numbers of interest, m < 50.

First determine the condition for the curvature-driven flute frequency to equal or

exceed the maximum shear-driven growth rate. This is expressed as Wfc = MaxX s, Or as
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ave > (npAwEéwc,-)l/ 2 where « is the ratio of the curvature-driven flute frequency to the
curvature-driven center cell growth rate. As typical values, for Awg,~. both = 107 2wy,
this gives a > 5, which agrees well with our observed value of 4.5 in Fig 3. For 1072 —
1073, this gives o > 15. When « is significantly less than these values, the system can
be considered to be dominated by the shear mode, since even on a flute average basis the
curvature is weak. On the other hand when « satisfies the above criterion, it still may be
that the shear mode can dominate, by its ability to isolate to the center cell. As a condition

to determine domination by the curvature mode we might simply take . > max ;.

We observe a pronounced effect on the curvature mode when there is sufficiently
strong shear. In the regime where Awg ~ -y the curvature mode starts at a marginal
mode number that is a factor 1./6 = 4.0 times as high as the zero shear limit. This result
appears connected to the fact that in this limit the mode takes on a real frequency nearly
equal to mwce, which makes sense if the curvature mode is indeed highly isolated to the
center cell. Assuming first that the mode isolates to the center cell reduces the general

quintic dispersion relation to a cubic:

D 1 1- DR (1-6
~éc ~ Dégc + Mo ( S oo ) so - DL 8be _o (29
np w-—c -0 w-1Q¢ w

where Q2 is the curvature drift frequency in the center cell. Rationalizing the denomina-

tors gives

w(w—0c)(=1=D6) +w(w—0c)DRuc + Wk (1 — np)wei /m — (w — Qc)?DN.(1-6) =0

(25)
Then, making the further assumption that w &~ mwc >> 7. reduces the cubic to a
quadratic in the doppler shifted frequency w — mwc. since the last term can be dropped
compared to the second, and then the constant w factor cancels out. In this form the fast
drift part of the term linear in frequency seen in Eq. (19) has disappeared and we have
only what appears to be the usual overshoot® term but with the factor é replaced by unity.

This occurs because in this high frequency regime, the trapped ion response dominates
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completely the passing electron response rather than just being a factor 6 larger as in the
zero shear limit. This is simply due to the different resonant denominators, for ions being
~ w — mwe ~ 1y, and for the passing electrons being w ~ mwc. So this analysis would
say this limit would pertain so long as mwc >> 7., and failure of this criterion should in
some sense define what is meant by weak shear so that a nearly unchanged curvature mode
occurs. This criterion is similar to our previously suggested rule for the weak curvature
limit. When Awg = ~. this reduces to mé > 1.0, so here this condition would not hold at
the lowest mode numbers of interest, but other conditions can easily be imagined where it
would hold even at m = 1. To summarize, sufficiently strong E x B shear increases the
stability of the curvature driven trapped particle mode by multiplying the overshoot term
by a factor 1/6, which therefore allows marginal stability for a higher mode number or a

lower passing fraction.

The marginal instability condition for the curvature driven mode due to the shear-
modified overshoot in the small D limit is n,/(2m) < 7./w.;. As specific examples, for
n, approaching unity instability requires m > 50 for v./w,; = 1072, and m > 500 for
Ye/wei = 1073, where both of these mode number limits will normally be completely
stabilized by even very weak FLR. In contrast, for n, ~ 0.1, instability will occur for
mode numbers a factor of 10 smaller than these, so that, while the ~./w,; = 1072 case
will stabilize with weak FLR, for the +./w.; = 10~ case, the marginal m is now as low as
5 and so this curvature mode is in the low or moderate m range and must be considered

along with the shear mode(itself modified by flute average of the curvature).

The curvature driven mode is sometimes clearly identified as completely separate from
the shear driven mode, especially when it is well separated in mode number—in this limit
the curvature mode is mainly at high m where even small FLR will completely stabilize
it, leaving only shear driven mode at low or moderate m. Even when the mode number
range overlaps, the two modes can be really distinct, as for example when the shear mode

is dominated by its anchor region amplitude for the positive wc case, and the curvature
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mode isolates nearly completely to the center cell. And, plots of v vs m for this case(not
shown here) show two intersecting but distinct curves. But, for the opposite, negative wc
case with the shear mode itself dominated by its center cell amplitude, then the two modes

appear to interact, since here the « vs m plots show a single merged curve(not shown here).

VIII. FINITE ION GYRO RADIUS

In this section we add in the effects of finite ion gyro radius. First examine the zero
curvature limit, the pure velocity shear mode of sec. V. In the discussion of the velocity
shear mode in ref 4., the authors gave an approximate rule for stabilization by finite ion
orbit effects, w.; > (Awg). Their rule is based on the flute approximation, however, where
the mode with zero a;/r has a growth rate increasing with m, apparently without limit.
This same rule comes out automatically from our flute limit. Eq. (17), if we add to the
left hand side the usual FLR term, —wmw.;. We see that the answer is naturally cast in
terms of the root-mean-squared value, (Awg). It is this flute limit rule that predicts no
FLR stabilization simply by increasing the mode number, but instead requires sufficiently
large a;/r to stabilize even the low m. And, numerical solutions confirm that the entire
low m range is nearly simultaneously stabilized at the same value, w.; > (Awg), which we

will call the ‘Aute limit’ value.

But now we have seen our more complete solution with a growth rate peaking out and
then dropping to zero as we increase the mode number m, and so we expect that imposing
weak finite ion gyro radius will selectively first stabilize or modify the high mode numbers.
More quantitatively, the high m stability characteristics are determined by the addition of
FLR to our fully isolated approximation, Eq. (19), where we now see that the fast drift
stabilization and FLR stabilization terms are of the same sign, for the case of interest,
negative we. Thus the two stabilization effects will add, and the addition of weak FLR
will first decrease the maximum unstable mode number, and then abruptly stabilize the

entire range when w.; > (Awg), determined by the flute limit. If the passing species were
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of opposite sign of charge, ions instead of electrons, this model predicts first an increase in
the maximum unstable mode number as weak FLR is added, since then the FLR and fast
drift terms subtract. But the final complete stabilization criterion is still accurately given

by the flute limit.

In the presence of curvature as in section VI the results can be expected to be more
complex since the zero gyro radius limit itself has a complex stability behavavior as a
function of mode number. In particular, we have seen that the shear-driven mode now can
possibly isolate to the center cell at low mode number, where the most effective stabilization
mechanism is not the fast drift term but the overshoot term (as modified by the shear).
With the addition of FLR, determination of net stability requires careful attention to
the relative signs of the two principal stabilization terms, overshoot and FLR. In the
isolated limit, evaluation of stability would then follow a balancing of terms similar to
that required for the curvature driven trapped particle mode,® which, for passing electrons
exhibits opposite signs for the FLR and overshoot terms, and also exhibits an increased
inertia coefficient caused by the Debye shielding that supresses the effectiveness of the
FLR term at the lowest mode numbers. All of these features can be seen in our isolated
approximation, Eq. (19) if we add in the proper FLR term, —wmw.;. (But remember that
Eq. (19) has only the shear drive, i.e., no curvature.) For complete stabilization the FLR
amplitude must exceed twice the overshoot term, much larger than the flute limit, since

FLR now subtracts from the overshoot stabilization.

For detailed results, let us first examine the rather special limit of 100% passing
fraction, n, = 1, where the shear mode as modified by curvature is not unstable for the
low mode numbers. Results are shown in Fig. 4. Part (a) shows the positive we case,
when anchor curvature is chosen to be insufficiently strong to supply complete stability
(wfe ~ 11Awg, and max v, =~ 14Awg). Here we see a changing window-in-mode-number
region of instability, with instability persisting for even the very large a;/r. This latter

behavior is similar to that predicted for the curvature driven trapped particle mode,>
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where finite ion gyro radius stabilization is of opposite sign to the stabilization provided
by the overshoot of a passing electron species—at some m value the two effects cancel
and instability reappears. Evidently, a similar competition of stabilizing effects is occuring
here. Now however we have three competing stabilizing terms, FLR, overshoot, and fast
drift, although this last one is usually only important at the highest mode numbers. For
passing electrons, FLR and overshoot have opposite signs, and FLR and fast drift have
the same sign. The sign of both the overshoot and fast drift change with the sign of the
charge of the passing species, so that if the passing species were ions instead of electrons

this window of instability at high a;/r would not be present.

Fig 4(b) shows the negative wc case, where we have chosen the anchor curvature
strong enough to provide flute stability (ws. ~ 20Awg. and max ~, ~ 14Awg), but where
instability persists in a middle range of mode numbers. Here, increasing a;/r stabilizes
first the high mode numbers and finally the entire range. Complete stability is reached
for this example when a,/r > 0.03, or when w.; > Awg. very nearly the same as the zero
curvature flute limit. No window of instability is observed here at higher values of a;/r,

apparently because the stronger curvature flute stabililty prevents the mode from isolating

at low m and thus prevents overshoot from becoming significantly large.

Now examine the lower passing fraction case, n, = 0.1, for negative wc, in Fig. 5,
where we can see that the unstable mode numbers extend down to m = 1,2. That is,
the lower passing fraction lowers the instability drive but also reduces the effectiveness of
the overshoot causing even the lowest mode numbers to be unstable, in contrast to the
np, = 1.0 case where the low mode numbers were stabilized by the overshoot. Now, when
adding FLR, instability at low m will at first be increased, due to the opposite sign of
the FLR and overshoot terms for the passing electron case. Stability can occur only when
FLR is sufficiently strong to make up for this cancellation. Compared to n, = 1.0, where

we had stability at all m for a;/r > 0.03 or w.,

~

> Awg, now with n, = 0.1, stability at all

m (with the last one unstable now being m = 1) requires a,/r > 0.3 or w.; > 100Awg, or

~
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stability for say m = 3 requires a;/r > 0.11 or w,; > 10Awg. In contrast, for the opposite
sign of charge of passing species, the FLR need only slightly enhance the overshoot term,
and we find again very nearly that the flute limit pertains, i.e., w.; 2 Awg, even for
m = 1,2. While our results for the low m can not be quantitatively correct, the general
scaling should be valid, and it is worth emphasizing again that it is these isolated modes at
low mode number that are the most dangerous, particularly for the passing electron case,
since the low mode numbers have the FLR term most severely depressed by the enhanced
inertia term. And, because this negative wc mode tends to isolate to the center cell, this
finite gyro radius stabilization is primarily a property of the center cell parameters, i.e.,

large a;/r in the anchor will be of little help.

As a final point, note that for Fig. 4 we have chosen Awg = 0.00lw.;, whereas
for Fig. 3 we had Awg = 0.0lw.;. This difference is the cause of the different range
of unstable mode numbers in Figs. 3 and 4, and is explained fully by our completely
isolated approximation, Eq. (20), which shows that the maximum unstable mode number

is tnversely proportional to (Awg)/2.

IX. PHYSICS SUMMARY

A final summary when all effects, shear, curvature, and FLR are included: Distin-
guish between the curvature driven mode and the shear driven mode, and also distinguish
between net flute stable and unstable. First, when the anchor curvature is strong enough
to supply net flute stability, then only the negative w¢ case is unstable to the shear mode.
This case, in the limit n, = 1.0, is stable for the low mode numbers but unstable at moder-
ate m by localizing to the center cell. For lower, more realistic, values of passing fraction,
say np ~ 0.1, the mode is unstable even for the lowest mode numbers, m = 1,2, and it
is this latter regime that requires quite large center cell FLR to obtain stability, if the
passing species is electrons. Second, when the anchor curvature is not strong enough to

supply flute stability then either sign of wc is unstable to the shear mode for some range
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of mode numbers, and with FLR included we now have the possibility of a window-in-m
remaining unstable even for large a;/r. Generally, larger passing fraction makes the shear
mode more unstable, although when the mode isolates to the center cell there can be sub-
tle tradeoffs creating a situation for the lowest mode numbers where the system can go
towards stability by increasing the passing fraction. Finally, the curvature driven mode
can have its stability improved by the shear increasing the overshoot stabilization. (And
a cautionary note: the very low mode numbers, especially m = 1, will require corrections

to any results obtained in this paper—see the discussion further on in sec. X.)

We are now in a position to draw some limited conclusions about stability of this shear
mode in simplified actual tandems. We focus on cases that can be reasonably described by
a two-region model. One is a standard tandem with plug (potential rise) assumed to exist
throughout the anchor region. Here, we have passing electrons, and in the frame where
the passing electrons see zero E x B drift we have a positive wc, which we found to be

stable, 7f the anchor curvature-driven stability is sufficiently strong.

The second case is a tandem with a thermal barrier (potential depression) assumed
to exist throughout the anchor and the final plugging potential to exist over essentially
negligible length. Here we have passing ions, and a negative wc, which due to the sign
change of the charge of the passing species is equivalent to our first case. That is, both
of these cases have a shear mode tending to isolate to the anchor and so can be stabilized
by sufficiently strong anchor curvature. But, both of these cases may still have a shear
mode instability if the design of the tandem is too close to marginal stability based only
on curvature drive. In this case there would in general be some significant mode amplitude
in both the center cell and anchor, with the displacement in the anchor being somewhat
larger, as per the discussion in sec. VI. A specific prediction can easily be generated by

our numerical model for a given set of equilbrium numbers.

As a third example, the negative tandem is similar to our positive thermal barrier

case, except for an additional constant negative potential, and so again we have passing
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ions and negative wc, and again the prediction is stability to the shear mode if the anchor

curvature stability is sufficiently strong.

We have seen that all three of the simplest two-region models of tandem mirrors are
stable to the worst form of the shear mode, that where the mode tries to localize to the
center cell. Indeed, since a rise(fall) in potential going from center cell to anchor means a
positive(negative) wc, and to the extent that a rise(fall) in potential also means a greater
electron(ion) passing density, then our model will always predict stability to the shear
mode that goes unstable by localizing to the center cell. This prediction may possibly
change when considering the variety of possible transient potential profiles occuring in real
experiments. In any case, the rule of thumb developed here is easily checked against any

possible (dominantly two-region) potential profile and its self-consistent passing density.

X. CONCLUSIONS

We have derived and numerically solved the equations for an electrostatic trapped
particle mode that is driven by axial shear in the equilibrium E x B velocity, in the limit
of the eikonal or high mode number approximation and for a restricted two region square
well model of the equilibrium of a tandem mirror. The model includes competing effects
of curvature and finite ion gyro radius. The results have considerably extended the results
obtained by others,® particularly in the explanation of how the mode changes from its
flute form, which is observed primarily in the low mode number limit and only in the zero
curvature limit. The mode’s principle characteristics are that it is more unstable for larger
passing density, and that it may be unstable despite large anchor curvature by isolating to
the center cell, without paying a line bending penalty since it is an electrostatic mode with
no restrictions on E|. The physical mechanism of the mode in the nonflute regime is the
differential E' x B drifts between the fractional density n, of trapped ions and the passing
electrons. The usual charge separation mechanism for interchange instability will act to

produce instability in the region with negative Awg and to produce stability in the region
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with positive Awg, thus tending to cause the mode to isolate to the former region. As
a separate issue, there is also the possibility for increased stability(relative to zero shear)
of the curvature driven trapped particle mode. This calculation was collisionless, but we
have seen that our answer for the passing electron response, in the limit of 100% passing

fraction, was identical to the strongly collisional answer,® as modified for our equilibrium.
gly q

Our model has two principal limitations. First, within the validity of the high mode
number regime, our axial equilibrium model is too specialized and inappropriately allows
arbitrary values of passing density, unrelated to other system parameters. A more realistic
model would tie all parameters together with the appropriate equilibrium constraints. The
value of our more loosely defined model is simply that it gave us the freedom to range over
widely varying ranges of important variables, particularly the passing fraction, without
worrying about the consistency issue. The physical insights gained from the results ap-
pear to be general and can now be applied to more realistic equilibria. One approach here
would be to extend the number of axial square wells arbitrarily, with reasonable constraints
established between passing fraction and potential differences between the various traps.
The coupled equations approach, with root solving for w, described in this paper, would
directly carry over to such a model. For an axial equilbrium profile of any complexity,
however, it may be more reasonable to go the full route of a completely continuous de-
scription of the orbits, which is most directly attacked with the initial value simulation

technique.

The second limitation, the high mode number approximation, has four issues. One,
the flute regime, D >> 1, may not be consistent with the high m limit. For example
with r/p; = 10., n, = 1, we have D = 1. at m = 10, but with n, = 0.1, D = 1. at
m ~ 3 — 4, so that in the latter case the flute regime can be reached only for m < 3. Two,
finite gyro radius tends to stabilize the high mode numbers. Three, at low m, rotational
modes driven by centrifugal force may be equally or more important than the velocity

shear. Four, the low mode number regime may reveal different physical effects for the
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shear mode, particularly in its nonflute form. For example, for a rigid m = 1 mode our
differential E x B drift explanation of this paper would seem to be ineffectual, since, for
this type of displacement the various species are simply drifting relative to a new center
of rotation, and hence are drifting tangent to density contours and no charge separation
is expected. But the flute limit has another physical explanation and may still occur for
m = 1. We need the full radial solution to do more than make plausible arguments. A
model that appears tractable to treat low mode numbers accurately is a radial gridded
version of the present axial square well model. Root solving techniques may become too

complicated, but initial value simulation techniques appear straightforward.
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Figure Captions

FIG. 1. Equilibrium axial profiles. Densities are shown as fractions of the total density,
which is a constant in z. In (a) is shown the trapped ion density, in (b) the trapped
electron densities, and in (c) the passing electron density. In (d) is shown the E x B drift

frequency, in the frame where the passing density sees zero drift.

FIG. 2. Numerical solution of Eq. (16). In (a) growth rate vs mode number is plotted for
the velocity shear mode with zero curvature and zero ion gyro radius, and for negative wc.
The passing fraction, n,, is a parameter. The straight line is the flute growth rate, given
by fy? = m2(Awg)2. In (b) the real frequency is plotted vs mode number for n, = 1.0.
Equilibrium values are 6§ = 0.25, r/p, = 10., Q./m = Awg = 0.0lw,;. Growth rate and
frequency are dimensionless, normalized to Awg. In (c) the ratio of the displacement in the

center cell to the displacement in the anchor is plotted vs mode number for the unstable

range of mode numbers.

FIG. 3. Growth rate vs mode number in the presence of curvature. The parameter is the
relative strength of the curvature driven flute stability, w?c /(Awg)?. In (a) for positive wc,

complete stability occurs for w}c > 20(Awg)?. In (b) is shown the real frequency for one of

the curves in (a). In (c), for negative wc, instability persists regardless of the magnitude
of w%c. The center cell curvature driven growth rate is 4. = 0.0lw,; = Awg. Other

equilibrium values same as in Fig. 2, except for a change to r/p, = 5, {1./m = 0.04w,;,

which change has little effect on the unstable modes.
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FIG. 4. Growth rate vs mode number in the presence of both curvature and finite ion gyro
radius, with a;/r a parameter, where w.;/w.; = (a,/r)2. Case (a) is for positive wc with
curvature not quite sufficient to supply complete flute stability, w?c = 125(Awg)?. Case
(b) is for negative wc with curvature more than strong enough to supply flute stability,
w%c = 400(Awg)?. Equilibrium values are changed from the previous figures to {1, /m =
Awg = 0.001w,;, 7/ps = 32.,4. = .003w,; = 3Awg, complete flute stability when wfc A
200(Awg)?.

FIG. 5. Growth rate vs mode number with a;/r as a parameter. Equilibrium parameters

the same as Fig. 4b, except that the passing density is reduced from 1.0 to n, = 0.1.
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